
Optimal Task Assignment in Heterogeneous Computing Systems

Muhammad Kafil and Ishfaq Ahmad
Department of Computer Science

The Hong Kong University of Science and Technology, Hong Kong.

Abstract'
Distributed systems comprising networked

heterogeneous workstations are now considered to be a
viable choice for high-performance computing. For
achieving a fast response time from such systems, an
eficient assignment of the application tasks to the
processors is imperative. The general assignment problem
is known to be NP-hard, except in a few special cases with
strict assumptions. While a large number of heuristic
techniques have been suggested in the literature that can
yield sub-optimal solutions in a reasonable amount of
time, we aim to develop techniques for optimal solutions
under relaxed assumptions. The basis of our research is a
best-Jrst search technique known as the A* algorithm from
the area of artijicial intelligence. The original search
technique guarantees an optimal solution but is not
feasible for problems of practically large sizes due to its
high time and space complexity. We propose a number of
algorithms based around the A * technique. The proposed
algorithms also yield optimal solutions but are
considerably fastel: The first algorithm solves the
assignment problem by using parallel processing.
Parallelizing the assignment algorithm is a natural way to
lower the time complexity, and we believe our algorithm to
be novel in this regard. The second algorithm is based on
a clustering based pre-processing technique that merges
the high afinity tasks. Clustering reduces the problem size,
which in tum reduces the state-space for the assignment
algorithm. We also propose three heuristics which do not
guarantee optimal solutions but provide near-optimal
solutions and are considerably fastel: By using our
parallel formulation, the proposed clustering technique
and the heuristics can also be parallelized to further
improve their time complexity.

Keywords: Best-first search, parallel processing, task
assignment. mapping, distributed systems.

1 Introduction
The fast progress of network technologies and

sequential processors has made distributed computing
systems, such as networks of heterogeneous workstations
or PCs, an attractive alternative to massively parallel
machines. To exploit the capabilities of these systems for
an effective parallelism, the tasks of an application must be
properly assigned to the processors.

Given a parallel program represented by a task graph
and a network of processors also represented as a graph,

1. This research was supported by the Hong Kong Research Grants
Council under contract number HKUST 619/94E.

0-8186-7879-8197 $10.00 0 1997 IEEE

the assignment problem is to find an allocation of the tasks
to the processors that results in the minimum turnaround
time. This is usually done by assigning an equal amount of
load to all processors and by reducing the overhead of
interaction among them. An assignment can be static or
dynamic, depending upon on the time at which thie
allocation or assignment decisions are made. In a static
assignment the information 'about the tasks and processors
in the systems is assumed to be known in advance, and the
tasks are allocated to the processors before starting thle
execution. The task assignment problem, also known as
the allocation problem or the mapping problem [4], is well
known to be NP-hard [6] , but continues to be regarded ais
an interesting and important problem.

Most of the algorithms proposed in the past yield sub-
optimal solutions while optimal algorithms exist only for
restricted cases or small problem sizes. Optimal solutions,
however, are required in many situations where
performance is the primary goal. Also, once an optimal
assignment of a program is determined, one can reuse this
information for future mappings.

The simplest approach to finding an optimal solution is
an exhaustive search. But since there are nm ways for
assigning m tasks to n processors, an exhaustive search iis
impractical. Another possibility is to reduce the size of the
state-space using an informed search. The A* algorithm
from the area of artificial intelligence is one such informed
search algorithm. The algorithm, despite guaranteeing an
optimal solution, is not feasible for problems of practically
large sizes because of its high time and space complexity.
Thus, we need ways to either further reduce the size of the
state-space, or speedup the search process using parallel
processing - or do both.

Since a parallel program is executed on multiple
processors, it is natural to utilize the same processors to
speedup the mapping of the program. Parallel processing
can help in reducing the search time and allows to find
optimal assignments for larger problem sizes, as compared
to the serial algorithms. Even for a sub-optimal solution,
parallel processing can help in solving a problem of larger
size. However, very little work has been done on using
parallel processing in solving the assignment problem; a
few exceptions are the parallel heuristic for the scheduling
problem proposed by Ahmad and Kwok [2] and the
parallel heuristics for the assignment problem proposed by
Bultan and Akyanat [SI. To the best of our knowledge, no
prior work on finding an optimal assignment using parallel
processing has been reported.

135

We propose a parallel algorithm that generates an
optimal solution for assigning an arbitrary task graph to an
arbitrary network of heterogeneous processors. The
algorithm, running on the Intel Paragon parallel machine,
gives optimal assignments for small to medium size
problems, with a reasonable speedup. We also propose a
clustering based pre-processing algorithm that merges the
high affinity tasks before starting the search. This reduces
the problem size whch in turn reduces the size of the state-
space for the assignment algorithm. We also propose three
heuristics which do not guarantee optimal solutions but
yield near-optimal solutions and take considerably less
execution time. The proposed heuristics and the
clustering-based approach can also be parallelized using
the proposed parallel formulation.

2 Problem Definition
A parallel program can be partitioned into a set of m

communicating tasks represented by an undirected graph
GT = (V , ET) where VT is the set of vertices, { t l , t2 ,.., t,,,},
and ET is a set of edges labelled by the communication
costs between the vertices. The interconnection network of
n processors, {p1,p2,..,pn}, is represented by an n*n matrix
L, where an entry Lg is 1 if the processors i and j are
connected, and 0 otherwise.

A task ti from the set VT can be executed on any one of
the n processors of the system. In a heterogeneous system
[16], each task has an execution cost associated with it on
a given processor. The execution costs of tasks are given
by a matrix X, where the matrix entry X, is the execution
cost of task i on processor p . When two tasks ti and tj
executing on two different processors need to exchange
data, a communication cost is incurred. Communication
among the tasks is represented by a matrix C, where Cq is
the communication cost between task i andj if they reside
on two different processors. The load on a processor is the
combination of all the execution and communication costs
associated with the tasks assigned to it. The total
completion time of the entire program will be the time
needed by the heaviest loaded processor.

Task assignment problem is to find a mapping of the set
of in tasks to n processors such that the total completion
time is minimized. The mapping or assignment of tasks to
processors is given by a matrix A, where A, is 1 if task i is
assigned to processor p and 0 otherwise. The load on a
processor p is given by

m n m m

C X i p * A i p + C C C (CijAipAjqLpq).
i = 1 q = l i = l j = 1

(P * 4)

The first part of the equation represents the total
execution cost of the tasks assigned to processorp, and the
second part is the communication overhead on p. To find
the processor with the heaviest load, the load on each of the
n processors needs to be computed. The optimal
assignment is the one that results in the minimum load on
the heaviest loaded processor among all the assignments.

3 Related Work
A large number of task assignment algorithms have

been proposed using various techniques such as network
flow [17], integer programming [121, state-space search
[14, 15, 181, clustering [3], bin-packing [19], randomized
optimization [1, 5,7, 81, etc. Most of these algorithms can
be classified according to the taxonomy given in Figure 1.
At the first level of the hierarchy these algorithms can be
classified as optimal and sub-optimal categories, where the
optimal algorithms can be further classified as restricted or
non-restricted categories. Restricted algorithms yield
optimal solutions in a polynomial time by restricting the
structure of the program andor the multicomputer system.
Non-restricted algorithms, on the other hand, consider the
problem in a more general context; they give optimal
solutions but not necessarily in a polynomial time.

Sub-optimal algorithms can be divided into
approximate or heuristics classes. Approximate
algorithms [9] assume the same computational model used
by the optimal algorithm. But instead of searching the
complete solution space for optimal solution, approximate
algorithms guarantee a solution that is within a certain
range from the optimal solution. Heuristic algorithms
make use of special parameters which affect the system in
indirect ways, for example, clustering the groups of
heavily communicating tasks together. A greedy heuristic
starts from a partial assignment and assigns one task at
each step until a complete assignment is obtained; in
general, backtracking is not allowed. Bin-packing
techniques use a sizing policy, an ordering policy, and a
placement policy for the tasks to be assigned. Randomize
optimization methods start from a complete assignment
and search for an improvement in the assignment by
exchanging and moving tasks among different processors.

Because of the intractable nature of the problem most
of the research is focused on the development of heuristic
algorithms. There are also some optimal algorithms
available either for restricted cases of the problem or for
very small problem sizes.

4 Overview of the A* Technique
The A* algorithm is a bestfirst search algorithm [13].

It has been extensively used for problem solving in
artificial intelligence. The algorithm is used to search
efficiently in a search-space (which is a tree in our case but
can be some other type of graph). It searches the nodes of
the tree starting from the root called the start nude (usually
a null solution of the problem). Intermediate nodes
represent the partial solutions while the leaf nodes
represent the complete solutions or goals.

Associated with each node is a cost which is computed
by a cost function f. The nodes are ordered for search
according to this cost, that is, the node with the minimum
cost is searched first. The value o f f for a node n is
computed as:

ffn) = gfn) + hfn)

136

Static
Task Assignment

/\ Sub-optimal

/\ Jon-restricted Approximate /\ Heuristic

/ \ ODtimization Clusterina

Figure 6: A classification of task assignment algorithms.

where g(n) is the cost of the search path from the start node The A” Algorithm
to the current node n; h(n) is a lower bound estimate of the
path cost from node n to the goal node (solution).
Expansion of a node is to generate all of its successors or
children and compute the f value for each of them. The
algorithm maintains a sorted list, called OPEN, of nodes
(according to their f values) and always selects a node with
the best cost for expansion. Since the algorithm always
selects the best cost node, it guarantees an optimal solution.
Since for a leaf node n, h(n) is 0, we will set the value of
fln) equal to g(n) for all leaf nodes.
4.1 Application to Task Assignment

For the task assignment problem under consideration,
the search space is a tree. The initial node (the root) is a
node with null assignment, i.e., no task is assigned;
intermediate nodes are nodes with partial assignments, i.e.,
some tasks are assigned while others are still unassigned at
this stage. A solution (goal) node is a node with a complete
assignment (all task are assigned). For the computation of
the cost function, g(n) is the cost of partial assignment (A)
at node n, that is, the load on the heaviest loaded processor.
For the computation of h(n), two sets Tp (the set of tasks
which are assigned to the heaviest loaded processor p) and
U (the set of tasks which are unassigned at this stage of the
search and have a communication link with any task in set
Tp) are defined. Now each task ti in U will be assigned to
either processor p or any other processor q which has a
direct communication link with p. Thus, there can be two
kinds of costs associated with the assignment of each ti:
X l P (the execution cost of ti on processor p) and the sum of
communication cost with all the tasks in set T Let cost (ti)
be the minimum of these two costs, then h(nfis computed
as;

h (n) = cos t (t ,)
ti€ U

The algorithm A* is described as follows:

(1) Build the initial node s and insert it into the list OPEN
(2) Setfls) = 0
(3) Repeat
(4)
(5) if (n is not a solution)
(6) Generate successors of n
(7)
(8) if (n’ is not at the last level in the search tree)
(9) An’) = g(n ’) + h(n ’)
(1 0) else A n ’) = g(n ’)
(1 1)
(12) endfor
(13) end if
(14)if (n is a solution)
(15)
(16)Until (n is a Solution) or (OPEN is empty)

A study by Ramakrishnan et al. [14] showed that the
order in which the tasks are considered for allocation has
a great impact on the performance of the algorithm (for the
same cost function used). Their study indicated that a
significant performance improvement could be achiewed
by first considering the tasks with larger weights in the
computation of the optimal cost at the shallow levels of the
tree. They proposed a number of heuristics for ordering; the
tasks. Out of these heuristics the so called m i n i i w
sequencing heuristic has been shown to perform the best.
The minimax sequencing works as follows. Consider a
matrix H of m rows and n columns where m is the number
of tasks and n is the number of processors. The entry I1 (i,
k) of the matrix is given by

H (i , k) = X i , + h (v) ,

Select the node n with the smallestfvalue.

for each successor node n’ do

Insert n’ into OPEN

Report the Solution and stop

where h(v) is given by

h (v) = min (Xjk, CV) ,
j e U

where U is the set of unassigned tasks which communicate

137

with ti. The minimax value, mm (ti) of task ti is defined as

m m (t i) = min{H(i,k), 1 I k l n } .

The minimax sequence is then defined as:
ll = (rl, r2, ..., r m } , mm (ri) 2 mm (ri+,), Vi.

4.2 An Illustrative Example
Given a set of 5 tasks, { t , t,, t2, t3, t4} and a set of 3

processors {pa p,, p2} as shown in Figure 2, the algorithm
first generates the minimax sequence (t* t,, t 2, t4, t3} .

I Po P1 PZ
11 9 / \ I l5
12 8

t1 I l 4
Processor graph 13 6

Execution cost matrix

Task graph
Figure 2: An example task graph and a processor and the network,
execution costs of the tasks on various processors.

Figure 2 illustrates the search tree for finding the
assignment for this example.

A node in the search tree includes the partial
assignment of tasks to processors as well as the value off
(the cost of partial assignment). The assignment of m tasks
to n processors is indicated by an m digit string ‘a@ l...am.
,’, where a, (0 I i I m - 1) represents the processor (0 to
n - 1) to which ith task has been assigned. A partial
assignment means that some tasks are unassigned; the
value of ai equal to ‘X’ indicates that ith task has not been
assigned yet. Each level of the tree corresponds to a task,
thus replacing an ‘X’ value in the assignment string with
some processor number. Node expansion is to add the
assignment of a new task to the partial assignment. Thus
the depth (6) of the search tree is equal to the number of
tasks m, and any node of the tree can have a maximum of
n (no of processors) successors.

The root node includes the set of all unassigned tasks
‘XXXXX’. For example in Figure 2, the allocations of to to

are considered by determining the costs of assignments at
the first level of the tree. The assignment of to to po
(‘0”) results in the total cost An) being equal to 30.
The g(n) in this case equals 15 which is the cost of
executing to on po. The h(n) in this case also equals 15
which is the sum of minimum of the execution or
communication costs of t, and t4 (tasks communicating

PO (‘OXXXX’), to topi (‘lXXXX’), and to top2 (‘2XXXX’)

with to). The costs of assigning to top, (26) and to to pz (24)
are calculated in a similar fashion. These three nodes are
inserted to the list OPEN. Since 24 is the minimum cost,
the node ‘2XXXX’ is selected for expansion. The search
continues until the node with the complete assignment
(‘201 12’) is selected for expansion

At this point since this is the node with a complete
assignment and the minimum cost, it is the goal node.
Notice that all assignment strings are unique. A total of 39
nodes are generated and 13 nodes are expanded. In
comparison, an exhaustive search will generate nm = 243
nodes in order to find the optimal solution.

5 The Proposed Algorithms
In this section, we describe our proposed parallel and

clustering algorithms for optimal solutions. The sub-
optimal algorithms are also explained in this section.
5.1 The Parallel Algorithm

The objective of the parallel algorithm is to divide the
search tree among the processing elements (PES) as evenly
as possible and to avoid the expansions of non-essential
nodes, that is, the nodes which are not expanded by the
sequential algorithm. A good overview of parallel depth-
first and best-first search algorithms are given in [lO][ll].
To distinguish the processors on which the parallel task
assignment algorithm is running from the processors in the
problem domain, we will denote the former with the
abbreviation PE (processing element which in our case is
the Intel Paragon processor). We call this parallel
algorithm the Optimal Assignment with Parallel Search
(OAPS) algorithm.
The OAPS Algorithm:
(1) Init- Partition()
(2) Setup-Neighborhood()
(3) Repeat
(4)
(5) if (a solution found)
(6)
(7)
(8) else
(9)
(10) endif
(1 1) Record the solution and stop
(12) end if
(13) If (OPEN’S length increases by a threshold U)
(14) Select a neighbor P E j using RR
(15) Send the current best node from OPEN to j
(16) end if
(17) If (Received a node from a neighbor)
(18) Insert it to OPEN
(19) if (Received a solution from a PE)
(20) Insert it to OPEN
(21) if (Sender is a neighbor)
(22)
(23) endif
(24)Until (OPEN is empty) OR (OPEN is full)

Expand the best cost node from OPEN

if (it’s better than previously received Solutions)
Broadcast the Solution to all PES

Inform neighbors that I am done

Remove this from neighborhood list

138

-a
zxxxx

(2 4)
oxxxx
(30)

Figure 3: The search tree for the example problem
(nodes generated = 39, nodes expanded = 13).

Initially the search tree is divided statically based on
the number of processing elements (PES) P in the system
and the maximum number of successors, S, of a node in the
search tree. There could be three situations:

Case 1) P< S: Each PE will expand only the initial
node which results in S new nodes. Each PE will get one
node and additional nodes are distributed in a round robin
(RR) fashion.

Case 2) P = S: Only the initial node will be expanded
and each PE will get one node.

Case 3) P > S: Each PE will keep expanding nodes
starting from the initial node (the null assignment) until the
number of nodes in the list is greater than or equal to P. List
is sorted in an increasing order of cost values of the nodes.
The first node in the list will go to PEI, the second node
will go to PEp, the third node goes to PE,, the fourth node
goes to and so on. Extra nodes will be distributed in
RR fashion. Although there is no guarantee that a best cost
node at the initial levels of the tree will lead to a good cost
node after some expansions, the algorithm still tries to
distribute the good nodes as evenly as possible among all
the PES.

If a solution is found during the search, the algorithm
terminates. Note that there is no master PE which is
responsible for generating and distributing nodes among
the PES. Therefore, the overhead of the static node
assignment is negligible as compared to the host-node
style because the whole process is done in parallel. To
illustrate this, we consider the example of the task

assignment problem of assigning 10 tasks to 4 proce:ssors
using 2 PES (PE1 and PE2). Here S is 4 since a node in the
search tree can have a maximum of 4 successors. Each PE,
therefore, generates 4 nodes numbered from 1 to 4 (as
shown in Figure 4 where the number in a box is the f value
of the node). PE1 will then get the first and third nolde 3,
while PE2 will get the second and fourth node.

Figure 4 An initial static assignment.

If there is no communication among the PES after the
initial static assignment (i.e., every PE just searches its
own tree), some of them may work on a good part of the
search space, while others may expand unnecessary nodes
(i.e., the nodes which the serial algorithm will not expand).
This can result in a poor speedup. To avoid this, PES need
to communicate to share the best part of the search space
and to avoid unnecessary work. This communicatioin can
be global (a PE broadcast its nodes to all other PEk) or
local (a PE communicates only with its neighbors).

In our formulation we have used a round robin (RR)
within neighborhood communication strategy. With this
communication strategy a PE can share the best part of the

139

PE0 PE1 PE2
Initial partitioning

nication

nication

sion

communication

expansion +
communication

0
0

expansion

it
Broadcast solution
and stop.

I expansion

1

stop

Figure 5: The operation of the parallel assignment algorithm using three PES.

140

0

.t
Stop

search space. Further, a PE can avoid unnecessary work
explicitly by communicating with its neighbors and
implicitly by broadcasting its solution to all other PES.
Since the Paragon PES are connected together with a mesh
topology, a PE can have a maximum of 4 neighbors. Since
most of the time a PE communicates only with its neighbor,
a low communication overhead is incurred making the
algorithm more scalable as compared to a global
communication strategy.

A PE periodically (when OPEN increases beyond a
threshold U) selects a neighbor in a RR fashion and then
sends its best node to that neighbor. As a result, the load is
balanced and the best part of the search space is shared
within the neighborhood of a PE. At finding a solution, a PE
broadcasts it to all the PES, thus helping in avoiding the
unnecessary work for a PE that is working on the bad part
of the search space. Once a node receives a better cost
solution than its current best node, it stops expanding the
unnecessary nodes. The PE that finds the first solution
broadcasts its result to all other PES, and from that point
each PE broadcasts its solution only if its cost is better than
a previously received solution.

With an initial partitioning, every PE has one or more
nodes in its list OPEN. Each PE then determines the PES in
its neighbor by using its own position in the mesh (topology
of the Intel Paragon). A PE starts expanding new nodes
starting from the initial nodes. PES then interact with each
other for exchanging their best nodes and to broadcast their
solutions. When a PE finds a solution, it records it in a
common file (opened by all PES) and stops. The optimal
solution is the solution with the minimum costs among all
PES.

To illustrate the operation (see Figure 5) of the OAPS
algorithm, we consider the example used earlier for the
sequential assignment algorithm. Here we assume that the
parallel algorithm runs on three PES connected together as
a linear chain. Initially three nodes are generated as in the
sequential case. Then, through the initial partitioning, these
nodes are assigned to the three PES. Each PE then goes
through a number of steps. In each step, there are two
phases: the expansion phase and the communication
phase'. In the expansion phase, a PE sequentially expands
its nodes (the newly created nodes are shown with thick
borders). It will keep on expanding until it reaches the
threshold (U) (which is set to be 3 in this example). In the
communication phase, a PE selects a neighbor and then
sends its best cost node to it. The selection of the neighbors
is done in a RR fashion. In Figure 5, the exchange of the
best cost nodes among the neighbors is shown by dashed
arrows. In the 5th step, PE1 finds its solution, broadcasts it
to other PES, and then stops. In the final step, PE0 also
broadcasts (not shown here for the sake of simplicity) its
solution to PE2 which finally records its solution and stops.

1. The synchronous operation of PES shown here is just to
illustrate the concept; the actual algorithm is fully
asynchronous and thus may follow a different sequence -
the final result will of course be the same.

5.2 The Preprocessing Clustering Algorithm
The algorithm starts by clustering (or merging) the

tasks in the task graph. Two tasks are merged if the
communication cost among them is so high that they will
never be assigned to two different processors in the
optimal assignment; Equations 5.1 and 5.2 given below
ensure that the two tasks under consideration are never
assigned to two different processors. Clustering reduces
the size of the task graph and hence the depth (d) of the
resulting search tree.

The algorithm first sorts the edges of the task graph,
and then selects the largest edge (i, 13, where task i and j are
the tasks connected with the edge. The cost of an edge
when mapped onto an edge of the processor graph1 is
defined as the sum of the edge cost and the minimum
execution cost of task i or j on the processors of the
processor edge. The cost is computed using the following
equation:

min { (X i p + Cij) Lps, (X j q + Cij)
min (min { < X j p + Cij> Lpq, (X i , + Cij> Lpq>
p , q = 1 to n

The cost of assigning tasks i and j to the same
processor is the minimum execution cost of two tasks on
either of the two processors of the processor edge. This
cost is given by the following equation.

L p q l) (5.1)

min <Xip + Xis>, (X iq + Xjq>l (5.2)
p . q = 1 ton

A selected edge is merged if the cost of mapping it onto
all of the processor edges is higher than the cost of
assigning the two tasks on the same processor. The
clustering process is repeated for all the edges of the
processor graph.

The clustering process is illustrated by an example,
given in Figure 6, where the largest edges selected are
shown as thick edges. In the first iteration the edge (tz, t4)
is selected and task t4 is merged with t2 and its
communication links with other tasks are added to t2. In
the second iteration t, is merged. In the third iteration, the
selected edge is not merged, and the algorithm stops.

After clustering, the tasks are reordered using the
minimax sequencing as discussed in Section 4.1. Now .the
tasks are selected for the assignment using this sequence.

The clustering procedure guarantees an optirnal
assignment only when the processors are fully-connec ted
since the searching algorithm assigns two communicating
tasks only to the directly connected processors.
5.3 Sub-optimal Algorithm

The sub-optimal algorithm, henceforth referred to as
the Sub-optimal Assignments (SA) algorithm, is designed
to obtain the solution faster and to overcome the high
memory requirements of A*. The basic idea in this
algorithm is that when the search process reaches a certain
level deep in the search tree, some search can be avoided
(some tree nodes can be discarded) without moving far
from the optimal solution. Based on this reasoning, we

141

I P I P 2 P3

t,

t2

t,

t4

Task graph

10 20 30

40 5 10

70 50 80

50 80 20

Iteration 1

Processor graph

Iteration 2

Figure 6: Illustration of the clustering procedure.

Execution cost matrix

@A@
Iteration 3

propose three heuristics, SA1, SA2 and SA3. The first
heuristic (SA1) is explained as follows. When the
algorithm selects a node for expansion and that node
belongs to a level R or deeper than that in the search tree,
it generates only its best successor instead of generating all
the successors (i.e., it discards all successors except the
best one). The second heuristic (SA2) is similar to the first:
when the search reaches at level R for the first time, the
algorithm starts discarding all successors except the best
node among all the nodes selected for expansion. The third
heuristic (SA3) is similar to the second heuristic except the
nodes are discarded from the global list (OPEN). For
example, if n nodes are generated, then all of them are
inserted to OPEN and n - 1 high cost nodes are discarded.

There is a little chance of running out of memory for
the above mentioned heuristics. This is because when a
node at level R is selected, the algorithm inserts only one
node to OPEN for expansion and takes one node from it.
Thus, no extra memory is required. Moreover, the running
time of the algorithm is reduced by a large factor since the
algorithm explores fewer nodes once it reaches the level R.

6 Experimental Results
We first discuss the workload used in our study and

then present the experimental results obtained by the
proposed algorithms.
6.1 Workload Generation

A realistic workload is important to validate an
assignment algorithm but very little information is
available about process communication patterns
encountered in distributed systems. In distributed systems,

there is usually a number of process groups with heavy
interaction within the group, and almost no interaction
with the processes outside the group [3]. With this
intuition, we first generated a number of primitive task
graph structures such as the pipeline, the ring, the server,
and the interference graphs, all consisting of 2 to 8 nodes.
The complete task graphs, consisting of 10-28 nodes, were
generated by randomly selecting these primitives
structures and combining them until the desired number of
tasks was reached. This was done by first selecting a
primitive graph and then combining it with a newly
selected graph through a link labelled with cost 1; the last
node was connected back to the first node.

Since we assume the processors to be heterogeneous (a
homogeneous processor system is a special case of a
heterogeneous processor system), the execution cost varies
from processor to processor in the execution cost matrix
(X); the average value, however, remains the same. To
generate the execution costs for the nodes and the
communication costs for the edges, we used a parameter
called the communication-to-cost ratio (CCR) which is the
value of the average computation cost divide by the
average communication cost per node. For example, if the
total communication cost (sum of the cost of all of the
edges connected to this task) of task i is equal to 16.0 and
the CCR is equal to 0.2, then the average execution cost of
i will be given by: 16.0 /0.2 = 80. We used the following
values of CCR: 0.1, 0.2, 1.0, 5.0, and 10.0.

For the processor graphs, we used 3 topologies each
comprising 4 nodes. For the parallel algorithm OAPS, we
used 2,4,8, and 16 Paragon PES.

142

6.2 Running Times of the Serial Algorithm
In this section we present the running times of various

versions of the serial assignment algorithm. Table 1 and 2
include the running times for different variations of the
serial algorithm for the fully-connected topology
comprising 4 processors. The running times of the serial
algorithm without any task ordering or clustering are given
in column 2; we will refer to it as A* in these tables. An
entry '**' in a column means the algorithm could not
generate the solution for this case using 50 MB of memory,
i.e., it ran out of memory after a few hours (usually 5 to 6
hours). The third column shows the running times of the
algorithm with the task ordering; we will refer to this
technique as A*R. The fourth column shows the running
times of the algorithm with clustering and then ordering;
we will refer to this technique as A*C. The fifth column is
the ratio of the running times of the two algorithms.

For the fully-connected topology of 4 processors and
with CCR equal to 1.0 (see Table l), the clustering
algorithm is on the average 3.95 times faster than A*R.
Table 2 presents the running times for the same topology
but with CCR equal to 5.0. The clustering algorithm is on
the average 28 1 times faster. The clustering algorithm
performs well when the value of CCR is high because for
these cases the optimal algorithm also assigns highly
communicating tasks to the same processor. For lower
values of CCR the algorithm does no merging for most of
the cases.

It is observed that for most of the cases, task graphs
with CCR equal to 0.1 and 0.2 result in larger search trees
as compared to the graphs with CCR equal to 1.0,5.0, and
10. The task graphs with CCR equal to 10.0 take the lowest
running times. This is because the cost of the optimal
solution for a higher CCR is less than a lower CCR and
thus the algorithm finds the optimal solution quickly
starting from an initial cost 0. For example, a task graph
consisting of 10 tasks with the CCR equal to 10.0 has the
solution cost equal to 7.36, while the same graph with the
CCR equal to 0.1 has the solution cost equal to 374.00.
Thus, the former takes only 0.40 seconds to find the
solution while the latter takes 4.30 seconds.

The processor topology also has a great impact on the
size of the search tree as well as on the running time. This
is because the algorithm assigns two communicating task
to two different processors only if the processors are
directly connected. So, in case of the line or ring topology,
the algorithm prunes some of the nodes in the search tree
based on this constraint. On the other hand, no such
pruning is done for the fully-connected case.
6.3 Speedup Using the Parallel Algorithm

In this section, we present the speedup of the parallel
algorithm using various number of processors. The
speedup is defined as the running time of the serial

Table 3 presents the speedup data for the fully-
connected topology comprising 4 processors and the task

algorithm over the running time of the parallel algorithm.

No. of
TaSkS

10

graphs with CCR equal to 0.1. The second collumn
includes the running time of the serial algorithm while the
third, fourth, fifth, and sixth columns include the speiedup
of the parallel algorithm over the serial algorithm using 2,
4, 8 and 16 Paragon PES, respectively. The bottom row of
the table indicates the average speedup of all the task
graphs.

We can observe that the speedup increases with an
increase in the problem size. Also the problems wiith a
lower value of CCR yield a better speedup in most of the
cases, since the running times of the serial algorithm in
those cases are much longer compared to the parallel
algorithm.

Table 1 : The running times using the fully-connected
topology (CCR = 1 .O)

T(A*) T(A*R) T(A*C)

3.35 0.87 0.17

(sec) (sec) (sec)

28

Avg

12
14
16
18
20
22
24
26

** 2451.56 2124.08

139.54
270.70
822.08

**
**
**
**
**

0.73
4.82
36.08
31.62
55.78
67.70
191.27
206.63

0.77
3.77
1.67

30.76
22.19
67.78
55.21
143.06

--
"
T(A*C)

5.12
0.95
1.28

21.60
1.03
2.51
1.00

3.46
1 .A4

1.15

--

--
3.95

Table 2: The running times using the fully-connected
topology (CCR=5.0).

No. of
Tasks

70
12
14
16
18
20
22
24
26
28

T(A*)
(sec)

0.24
1.53

35.98
10.29

6195.63
**
**
**
**
**

I I

T(A*R)

0.27
0.49
1.73
1.67

29.79
21.96
3.98

3387.58
4134.28

52.86

(sec)

I

T(A*C)

0.08
0.12
0.25
0.27
0.55
1.14
3.18
4.15
2.19
3.87

(sec)
T(A"R)
T(A*C)

3.37
4.08
6.92
6.19
54.16
19.26
1.25

816.28
1887.80

--

13.66 -- --
The values of the average speedup for the fully-
connected, ring, and line topologies are shown graphicially
in Figure 7.
6.4 Results of the Heuristics

In this section, we present the result of comparing the
three proposed heuristics (SA1, SA2, SA3) with the
optimal algorithm. We make two kinds of comparisons.
First, we compare the percentage deviation of the solution
produced by SAl, SA2 and SA3 from that of OASS. This

143

deviation is defined as follows:
%D = (Cost(SA) - Cost(0ASS) * 100) / Cost(0ASS)
Second, we compare ratios of the running times of

SA1, SA2 and SA3 to those of OASS. Optimal solutions
are first obtained for the five task sets discussed in Section
5.2 and then sub-optimal solution are obtained using SAl,
SA2 and SA3 for the same task sets. Heuristic tree level
used is:

R = 141,
where d is the maximum depth of the search tree. Table 4
presents the results for the ring topology with 4 processors
and the task graphs with CCR equal to 0.2. Each entry in
the table is the average of five runs of each algorithm for 5
task graphs generated using various permutations of the
pipeline, the ring, the server and the interference sub-
graphs. The average values of the percentage deviation in
the solution and the ratios of the running times are
indicated in the bottom row.

The results indicate that SA3 always gives good
solutions in terms of the percentage cost deviation from the
optimal. This is because SA3 discards high cost nodes
from the global list OPEN, so good nodes are always
prevented from deletion. SA2 deviates more than SA3 but
is faster.

The average cost deviation and the ratio of time
improvement for the fully-connected topology (with
different values of CCR) is shown in Figure 8. It can be
noted that the average percentage cost deviation for the
cases with CCR equal to 5.0 and 10.0 is quite high as
compared to the cases with lower values of CCR. This is
because when the task graph has a larger value of CCR the
optimal algorithm assigns more tasks to a single processor
(for some cases all the tasks goes to one processor).
Therefore, the optimal algorithm follows a rather straight
path in the search tree considering less options. If the sub-
optimal algorithm discards a node on this path, it will
deviate far from the optimal.

The availability of the optimal algorithm, sub-optimal
heuristics, and the parallel algorithm gives a choice to the
user to select a suitable algorithm depending upon the
objective. If the objective is to find a solution in a short
time, then SA2 can be used. To obtain a near-optimal
assignments for a task graphs with higher values of CCR,
SA3 can be used. If finding the optimal solution is the main
objective without any regard to the algorithm running
time, then the sequential A* can be used. If the resources,
such as a parallel machine, are available, then OAPS can
be used to speedup the running time of the optimal
algorithm.

7 Conclusions and Future Work
We proposed algorithms for optimal and sub-optimal

assignments of tasks to processors. We considered the

problem under relaxed assumptions such as an arbitrary
task graph with arbitrary costs on the nodes and edges of
the graph, and processors connected through an
interconnection network. Our algorithms can be used for
homogeneous as well as heterogeneous processors,
although in this paper we considered only the
heterogeneous cases. We believe that to the best of our
knowledge, ours is the first attempt in proposing a parallel
algorithm for the optimal task-to-processor assignment
problem. Although we kept the mapping of the algorithm
on the Paragon PES simple, some fine refinements are
possible to further improve the performance.

A further study is required to understand the behavior
of the parallel algorithm. One possibility is to implement
quantitative load balancing of the tree nodes after a
processor finds its solution, i.e., let the processor find more
than one solution. Also, additional experimentation is
required to find the ideal value of the threshold U. The
clustering algorithm and the sub-optimal heuristic SA3
may be combined in order to obtain faster and close-to-
optimal assignments for task graphs with high values of
CCR. Our future plans also include a parallelization and
analysis of the heuristic algorithms (for an ideal tree level
R) to start applying the heuristics would also require more
future works.

References
I. Ahmad and M. K. Dhodhi, “Task Assignment using
Problem-Space Genetic Algorithm,” Concurrency:
Practice and Experience, vol. 7, no. 5. pp. 41 1-428,
August 1995.

I. Ahmad and Yu-Kwong Kwok, “A Parallel
Approach to Multiprocessor Scheduling,”
Intemational Parallel Processing Symposium, Santa
Barbra, CA, April 1995, pp. 289-293.
N. S. Bowen, C. N. Nikolaou, and A. Ghafoor, “On
the Assignment Problem of Arbitrary Process
Systems to Heterogeneous Distributed Computer
Systems,” IEEE Trans on Computers, vol. 41, no. 3,

S. H. Bokhari, “On the Mapping Problem,” IEEE
Trans. on Computers vol. c-30, March 1981, pp. 207-
214.

T. Bultan and C. Aykanat, “A New Heuristic Based on
Mean Field Annealing,” Journal of Parallel and
Distributed Computing, vol. 16, no. 4, pp, 292-305,
Dec 1992.

M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, (Freeman, San Francisco, CA, 1979).
D. E. Goldberg, “Genetic Algorithms in Search,
Optimization, and Machine Learning,” (Addison,
Wesely, Reading, MA 1989)
S. M. Hart and Chuen-Lung S. Chen, “Simulated
Annealing and the Mapping Problem: A

pp. 197-203, March 1992.

144

[91

T(A*R)

Computational Study,” Computers and Operations
Research, vol. 21, no. 4, pp 455-461, 1994.

M. A. Iqbal and S. H. Bokhari, “Efficient Algorithms
for a Class of Partitioning Problems,” IEEE Trans. on
Parallel and Distributed Systems, vol. 6, no. 2, Feb.
1995.

T(A*R)
T(0PAS)

PEs=2 PEs=4 PEs=8 PEs=16

[10]A. Grama and Vipin Kumar, “Parallel Search
Algorithms for Discrete Optimization Problems,”
ORSA Joumal on Computing, vo1.7, no.4 (Fall 1995)

[11]V. Mumar, K. Ramesh, and V. Nageshwara Rao.
“Parallel best-first search of state-space graphs: A
summary of results,” Proceedings of the I988
National Conference on Artificial Intelligence, pp.

[121 P.-Yio R. Ma, E. Y. S Lee, “A Task Allocation Model
for Distributed Computing Systems,” IEEE Trans. on
Computers, vol. c-31, no. 1, Jan. 1982.

[131 N. J. Nilson, Problem Solving Methods in Artificial
Intelligence. New York: McGraw-Hill, 1971.

[14]S. Ramakrishnan, H. Chao, and L.A. Dunning, “A
Close Look at Task Assignment in Distributed

pp 365-385.

122-126, Aug. 1988.

10

12

14

16

Systems,” IEEE INFOCOM ‘91, pp. 806-812, 1991.

[15]C.-Ch. Shen and W.-H. Tsai, “A Graph Matching
Approach to Optimal Task Assignment in Distributed
Computing System Using a Minimax Criterion,”
IEEE Trans. on Computers, vol. c-34, no. 3, pp. 197-
203, March 1985.

[161 H. J Siegel, J. K. Antonio, R. C. Metzger, Min Tam,
and Yan A Li, “Heterogeneous Computing”, Parallel
and Distributed Computing Handbook, pp. 725-7611,
McGraw-Hill, New York.

[171 H. S. Stone, “Multiprocessor Scheduling with the Aid
of Network Flow Algorithms,” IEEE Trans. (on
SofnYare Engineering, SE-3, vol. 1, pp. 85-93, Jan.
1977.

[18] J. B. Sinclair, “Efficient Computation of Optimal
Assignments for Distributed Tasks,” Joumal of
Parallel and Distributed Computing, vol. 4, 1987, pp.

[191 C. Woodside and G. Monforton, “Fast Allocation of
Processes in Distributed and Parallel Systems,” IEEE
Transactions on Parallel and Distributed Systems,
vol. 4, no. 2, Feb. 1993.

342-362.

30.14 1.87 3.48 5.72 7.63

58.96 1.96 3.68 3.60 12.85

105.05 1.70 2.02 4.58 4.64

1550.46 2.00 2.94 4.72 6.71

Table 3: The speedup using the fully-connected topology (CCR=O. 1).

18

20

Avg

3839.00 2.00 3.86 7.59 13.16

3191.86 1.78 3.72 5.62 9.97

1.89 3.28 5.30 9.13

m
T(SA1)

112
1 54
175
4 17
3 53
2 35
7 13
6 19
15 72

490

m
T(SAP)

2 68
3 18
3 94
8 65
7 22
5 11

37 97
25 89
108 75

22 60

Table 4: The time and cost comparison using the ring topology (CCR=O.2).

No. of

20
22
24

C(SAI) -C(OASS) *lOQ
C(OASS1

7.20
1.96
4.08
2.68
1.86
6.04
2.81
1.53
3.52

3.52

-
UOASS

11.82
2.24
4.21
3.41
2.07
6.31
4.15
2.51
4.39

3.53

C(0ASS

0.00
1.49
0.55
0.55
1.15

2.30
3.27
0.94
3.88

1.67

m
T(SA3)

1.95
1.90

2.48
4.24
2.81
2.91
22.59
10.19
40.81

9.99

145

Proc topology = fully
connected

I 1 nil I

8
P
7 6 U a
$ 4
v)

2

0
0.1 0.2 1 5 10

CCR

Proc topology = ring

0.1 0.2 1 5 10

CCR

I c w "

9 - 5
< 4
a
Q
a 3
- 2

1
0
0.1 0.2 1 5 10

C C R

Proc topology = line

Figure 7: The average speedup of the parallel algorithm.

~~

Proc topology = fully connected

0.1 0.2 1 5 10
CCR

70

60

x 50

40 E 30 *

t
0

E *O
10

0

v)

Proc topology = fully
connected

0.1 0.2 1 5 10
CCR

Figure 8: The percentage cost deviation and speedup of the sub-optimal algorithms over the optimal algorithm.

146

